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Abstract Information visualization (InfoVis), the study of
transforming data, information, and knowledge into interac-
tive visual representations, is very important to users because
it provides mental models of information. The boom in big
data analytics has triggered broad use of InfoVis in a vari-
ety of domains, ranging from finance to sports to politics.
In this paper, we present a comprehensive survey and key
insights into this fast-rising area. The research on InfoVis
is organized into a taxonomy that contains four main cate-
gories, namely empirical methodologies, user interactions,
visualization frameworks, and applications, which are each
described in terms of their major goals, fundamental prin-
ciples, recent trends, and state-of-the-art approaches. At the
conclusion of this survey, we identify existing technical chal-
lenges and propose directions for future research.

Keywords Information visualization · Interactive
techniques · Large datasets

1 Introduction

Information visualization (InfoVis) is a research area that
aims to aid users in exploring, understanding, and analyzing
data through progressive, iterative visual exploration [124].
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With the boom in big data analytics, InfoVis is being widely
used in a variety of data analysis applications [22,31,97].
Examples include visual analysis of business data [22,31,
80,90,92,93,123,152], scientific data [38,97], student histo-
ries [137], sports data [111], ballot data [155], images and
videos [26,114,132], auction data [63], and search results
[106,121]. Accordingly, from researchers to brand strate-
gists, financial analysts and human resource managers, better
understanding and analysis of data/information is becoming
an increasingly powerful way for further growth, productiv-
ity, and innovation. Moreover, we see average users, includ-
ing consumers, citizens, and patients, examine public data
such as product specifications, blogs, and online communi-
ties to choose products to buy [39], decide issues to vote
on [163], and seek health-related information [23]. Recent
advances in InfoVis technologies provide an effective avenue
to address the current and future “glut” of information faced
by today’s users.

For all these reasons, we believe InfoVis techniques are
valuable and, therefore, worth studying, especially the recent
research trends. Existing surveys were either conducted sev-
eral years ago [47,143] or focus on a specific topic of visu-
alization such as graph visualization [145], software visu-
alization [24], or visualization of network security events
[124]. In this paper, we have conducted a systematic analy-
sis of recent InfoVis techniques, approaches, and applica-
tions, aiming to provide a better understanding of the major
research trends and mainstream visualization work, along
with their strengths and weaknesses. The objective of this
survey is twofold:

– We provide researchers who work on InfoVis or related
fields a comprehensive summary and analysis of the
state-of-the-art approaches. As a result, this survey can
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be regarded as a brief introductory course that leads
researchers to frontier research and development.

– We provide the general InfoVis audience a global picture
of the area. We try to bridge the gap between the most
cutting-edge research and real-world applications.

The paper is organized as follows: we first present an
overview of InfoVis techniques, including the pipeline and
classification schemes. We then introduce mainstream work
in each of the four major categories—empirical methodolo-
gies, interactions, frameworks, and applications—in Sects.
3, 4, 5, and 6. Section 7 presents an aspiration for future
research by summarizing the major challenges in this filed.
Finally, in Sect. 8, we conclude our work.

2 Overview

In this section, we briefly introduce InfoVis and its recent
research trends organized by novel classification schemes.

2.1 Visualization pipeline

Figure 1 provides an overview of the InfoVis pipeline. It has
five main modules: data transformation and analysis, filter-
ing, mapping, rendering, and UI controls. The input is a col-
lection of data that can be structured or unstructured. The data
transformation and analysis module is tasked with extracting
structured data from the input data. If the input data collec-
tion is too large to fit into computer memory, a data reduction
technique is applied first. For unstructured data, some data
mining techniques such as clustering or categorization can
be adopted to extract related structure data for visualization.
With the structured data, this module then removes noise by
applying a smoothing filter, interpolating missing values, or
correcting erroneous measurements. The output of this mod-
ule is then sent to the filtering module, which automatically
or semi-automatically selects data portions to be visualized
(focus data). Given the results produced by the filtering mod-
ule, the mapping module maps the focus data to geometric
primitives (e.g., points, lines) and their attributes (e.g., color,
position, size). With the rendering module, geometric data are
transformed into image data. Users can then interact with the
generated image data through various UI controls to explore
and understand the data from multiple perspectives.

2.2 InfoVis classification schemes

Application is a strong driving force behind InfoVis research.
As a result, research in this field is usually motivated by real-
world data, user requirements, and tasks. In this context, a
wide range of models, methodologies, and techniques have
been proposed by researchers for a large number of appli-

Fig. 1 Visualization pipeline

cations. Table 1 lists representative work of recent InfoVis
research, classified into four categories.

The first category, empirical methodologies, consists of
dozens of visualization models and theories, as well as var-
ious evaluation studies. The major goal of the proposed
visualization models and theories is to provide a theoreti-
cal foundation for large numbers of applications from differ-
ent domains, while the evaluations can be used to bridge the
gap between research and real-world applications. Most of
the existing methods employ usability studies and controlled
experiments to understand how real users carry out a task and
interact with the designed visualization toolkit/technique.
Visualization designers/developers can then evaluate the
potential and limitations of their tools/techniques.

Techniques in the interactions category can be further cat-
egorized into two groups: WIMP (windows, icons, mouse,
pointer) interactions and post-WIMP interactions. WIMP
interaction techniques mainly focus on studying how users
interact with visualization tools by the use of a mouse and a
keyboard. Post-WIMP interaction techniques aim to explore
how users leverage pen or touch interactions to interact with
devices that attempt to go beyond the paradigm of windows,
icons, menus and pointer devices, such as touch-enabled
devices.

The research in the third category, frameworks, aims to
design either a generic visualization framework for wide-
spread deployment of visualization related techniques or
applications [17,57], or a system for a certain set of applica-
tions in a specific domain such as multivariate data [28] or
inhomogeneous data [89].

123



A survey on information visualization

Table 1 A taxonomy of InfoVis
techniques and representative
work in recent years

InfoVis techniques Examples

Empirical methodologies

Model [11,34,35,52,65,66,84,95,119,128,146,153]

Evaluation [4,12,14,15,18,49,60,69,78,82,98,100,101,103,104,115,116,
131,156]

Interactions

WIMP interactions [37,55,135]

Post-WIMP interactions [13,70,147]

Frameworks

Systems and frameworks [2,17,28,57,89,153]

Applications

Graph visualization [3,8,9,13,19,20,30,36,40,42,59,62,85,91,118,120,51,133,162,167,
164,170]

Text visualization [1,5,22,32,31,83,92–94,154,159,163,169]

Map visualization [1,44,71,102,106,117,125,136,144,148]

Multivariate data visualization [21,48,68,72,108,112,134,139,140]

Since InfoVis research is actively driven by real-world
applications, a taxonomy of the field cannot be formulated
without including practical and characteristic applications.
In the fourth category, applications, we aim to introduce the
various applications in this field, including graph visualiza-
tion, text visualization, map visualization, and multivariate
data visualization.

As shown in Table 1, most of the recent InfoVis papers
focus on empirical methodologies and applications (cate-
gories 1 and 4). This indicates that InfoVis is gradually
becoming mature and an increasing number of researchers
and practitioners have studied empirical methodologies to
steadily reach users, and have actively applied the exciting
research outputs to various real-world applications.

3 Empirical methodologies

To put InfoVis research into practice, researchers in this field
have developed many empirical methodologies for better
supporting the design and implementation of novel and useful
visualizations. Empirical evaluation methods are generally
based on usability studies and controlled experiments [113].
According to the generality of the empirical methodologies,
we divide them into two categories: model and evaluation. If
an empirical method can be applied to a wide range of appli-
cations/domains, it falls into the former category; otherwise,
it belongs to the second category. In this section, we briefly
review each of the categories.

3.1 Model

Models are the foundation of empirical studies. In the past
years, various models have been developed to help design
effective visualizations. Roughly, they can be classified into

the following categories: visual representation models, data-
driven models, and generic models.

Visual representation models are particularly important
for putting a wide range of research outputs into practice.
Researchers have introduced many models to handle differ-
ent perception problems in InfoVis. For example, Steinberger
et al. [128] proposed context-preserving visual links to facil-
itate the comparison and interpretation of related elements
in different views. A visual difficulties model [65] is devel-
oped to help users understand important information in a
visualization. The visual difficulties evidence emphasizes a
trade-off design between efficiency and beneficial obstruc-
tions. Furthermore, the privacy-preserving model [35] and
uncertainty model [34,160,161] are also studied to adap-
tively protect sensitive information and well illustrate the
uncertainty information embedded in the data and/or caused
by the visualization process.

The development of visualization is driven by real-world
applications and related data. As a result, several data-driven
models have been studied and applied to a variety of data,
such as high-dimensional data [2,11], heterogeneous data
[89,129], geographic data [95], narrative data [66], and tables
of counts, proportions, and probabilities [153].

Recently, some generic theories and models have also
been developed to guide the deployment of InfoVis tech-
niques and tools [52,84,119,147]. For example, Lam et al.
[84] proposed a scenario-based method to study evaluation
in InfoVis. Through an extensive study of over 800 visualiza-
tion publications, the authors divided the existing evaluation
methods into seven scenarios: evaluating visual data analy-
sis and reasoning, evaluating user performance, evaluating
user experience, evaluating environments and work practices,
evaluating communication through visualization, evaluating
visualization algorithms, and evaluating collaborative data
analysis. To help visualization designers/developers better
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conduct design study research, Sedlmair et al. [119] system-
atically reviewed related methods in HCI, social science, and
visualization. They proposed a nine-stage framework for bet-
ter conducting design studies by reflecting their own expe-
riences and other related papers on InfoVis. The nine stages
are learn, winnow, cast, discover, design, implement, deploy,
reflect, and write. Practical guidance and potential disadvan-
tages are provided for each stage.

3.2 Evaluation

User studies are the most commonly used evaluation method
used in InfoVis and offer a scientifically sound method to
measure visualization performance. As a result, they are
an important means to translate laboratory InfoVis research
into practical applications. User studies usually involve
techniques ranging from informal surveys, to crowdsourc-
ing user studies [78,103] and rigorous laboratory studies
[4,15,60,69,98,116] that invite a small number of partici-
pants. Here we briefly introduce the rigorous laboratory stud-
ies and crowdsourcing user studies.

Recent work involving rigorous laboratory studies can
be further classified into two categories: controlled exper-
iments to compare design elements and controlled experi-
ments to compare tools with similar functions. In the first
category, researchers have compared and evaluated specific
widgets or visual mappings ranging from artery visualization
design [15] to visual semiotics and sketchiness evaluation
in uncertainty visualization [18,98], aesthetics and memo-
rability of visual features in graph drawing [101,115], and
ambient and artistic visualization design related to residen-
tial energy use feedback [116], as well as rhetorical illustra-
tions and visual features such as embellishments [14], style
[104], glyph design [100], graphical overlays [82], visual
variables on tiled wall-sized displays [12], strokes [49], and
slope ratio [131]. In the second category, researchers and
practitioners have evaluated many visualization tools such
as different ways to represent dual-scale data charts [69] and
an effective way to visualize set data [4].

Rigorous laboratory studies have succeeded in evaluating
Infovis designs/applications. However, collecting the evalu-
ation results from only a small number of participants may be
problematic in many design situations since the results often
lead to a lack of statistical reliability [79]. To solve this prob-
lem, crowdsourcing user studies [78,103,156] have attracted
recent attention. For example, Micallef et al. [103] leveraged
crowdsourcing to assess the effect of six visualization tech-
niques on Bayesian reasoning. Through a crowdsourcing-
based study, Kim et al. [78] systematically examined whether
an eye tracker is always a useful tool to evaluate InfoVis
techniques. With this empirical study, the authors found a
limitation of the eye tracking method: its inability to capture
peripheral vision.

4 Interactions

In InfoVis, user interactions are as important as presenta-
tion for effective information understanding and analysis.
In 2007, Yi et al. [166] provided a comprehensive survey to
study the role of interaction techniques in InfoVis. They clas-
sified the interaction techniques into seven categories: select,
explore, reconfigure, encode, abstract/elaborate, filter, and
connect. We recognize this survey by providing an update of
state-of-the-art interaction techniques, which are classified
into two categories: WIMP (windows, icons, mouse, pointer)
interactions and post-WIMP interactions.

4.1 WIMP interactions

Recently, a set of WIMP interactions were developed to facil-
itate visual analysis. Typical examples include basic interac-
tions such as selection, filtering, brushing, and highlighting
[92,160], as well as advanced interactions like visual com-
parison [135], interest-driven navigation [55], focus-based
navigation [105,138], and faceted navigation [37].

To help users better understand summarization results of
a text corpus and perform deeper analysis, TIARA [93] aims
to allow users to interact with the generated visual summary
and examine relevant data from multiple perspectives. To this
end, TIARA provides a set of interactions, for example, inter-
active topic ordering, topic details on demand, and strength
comparison.

Inspired by real-world user comparison behaviors such
as side-by-side, shine-through, and folding, Tominski et al.
[135] developed a novel interaction technique coupled with
several complementary visual cues. The major feature of this
interaction technique is that allowing a user to freely select
the visual information to be compared, which is represented
by views. Then the user can arrange the views according to the
analysis task. Typically, s/he can place them side-by-side or
overlap them. Two interaction techniques, shine-through and
folding, are provided to compare overlapping views. Figure 2
illustrates the basic idea of the folding interaction. Fur-
thermore, supplementary visual clues, such as a hierarchy
overview, an origin ghost, and difference LEDs, have also
been developed to help users perform the comparison task.

4.2 Post-WIMP interactions

In addition to the classical WIMP interaction techniques that
use a mouse and a keyboard, post-WIMP interaction tech-
niques employing touch interfaces are now very common in
applications ranging from visualization design [147] to co-
located collaborative visual analytics [70] and science learn-
ing [13]. For example, to explore how pen and touch interac-
tions are applied to create an InfoVis design as well as their
influence on each other, Walny et al. [147] conducted a Wiz-
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Fig. 2 Folding interaction to
reveal and relate information
shown in overlapping node-link
diagrams [135]

ard of Oz study. In this study, an unseen human (the “wizard”)
partially controlled how the computer system responded to
a subject’s actions. The authors reported several interesting
findings, including that the subjects could smoothly switch
to the new interaction paradigms and were clearly aware of
the use scenario of pen-and-touch interactions. Furthermore,
integrated interaction helped users a great deal.

5 Systems and frameworks

The research into systems and frameworks for InfoVis has
attracted a great deal of attention and developed rapidly.
Researchers have introduced a number of new visualization
systems [16,17,41,57,150] and frameworks [28,45,89,153,
158,161] to facilitate development and deployment of Info-
Vis applications. In this section, systems refer to building
libraries or toolkits for developing visualizations. Frame-
works represent modeling different aspects of visualization
techniques.

5.1 Systems

Implementing interactive visualization applications from
scratch is difficult [41,57]. Towards this end, researchers have
proposed a variety of visualization systems such as Impro-
vise [150], the InfoVis Toolkit [41], and Prefuse [57] to sup-
port the creation and customization of visualization applica-
tions. Improvise is a visualization system that allows users
to interactively create multiple, highly linked views of rela-
tional data. A sophisticated coordination mechanism based
on shared objects and expressions is employed by Impro-
vise. The InfoVis Toolkit is a Java-based InfoVis library with
unified, generic data structures and visualization algorithms
to simplify the development of visualization applications.
Prefuse [57], based on the classic visualization pipeline (Fig.
1), is a widely used visualization toolkit that features a library
of visualization-oriented data structures, layout algorithms,
and interaction and animation techniques.

These traditional systems have been applied to build-
ing successful InfoVis applications. However, extending or
tailoring the visualizations of the systems may be expen-
sive and difficult [16]. Protovis [16] has emerged as a
new visualization system to overcome the problem of the
traditional systems using declarative, domain-specific lan-
guages. It strikes a balance among expressiveness, acces-
sibility, and efficiency and employs JavaScript and Scalable
Vector Graphics (SVG) to create interactive web-based visu-
alizations [16]. Protovis has been further extended to sup-
port the Java programming language [56] to achieve bet-
ter performance. More recently, a new web-based library
called Document-Driven Documents (D3) [17] has become a
very popular toolkit to construct interactive visualizations on
the web (Fig. 3). As opposed to other visualization toolkits
[57,16], D3 does not use tailored scenegraph abstractions.
On the contrary, it supports direct manipulation of document
elements (namely, webpage elements) by binding data to doc-
ument elements.

5.2 Frameworks

In recent years, we have witnessed a growing interest in
research into InfoVis frameworks. A number of frameworks
[25,45,158,161] have been proposed to characterize InfoVis
from different perspectives such as uncertainty [161] and
information theory [25].

Chen and Jänicke [25] described a framework based on
information theory to evaluate the relationship between visu-
alization and information theory. Their findings suggested
that the information-theoretic framework should be able to
characterize the visualization process. Adding new visualiza-
tions with existing toolkits [57] to an application is not easy
as this often requires significant changes, such as to the data
structures or scene graphs. WebCharts [45] is a framework
that provides a strategy for incorporating visualizations into
existing JavaScript applications without the need for such
changes.
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Fig. 3 Interactive visualizations created by D3 [17]
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Fig. 4 Visualization of uncertainty variations in a visual analysis process using the uncertainty framework [161]

Uncertainty information can frequently show up in a
visualization process [29]. When uncertainty arises, the
uncertainty information may increase, decrease, split, or
merge through the entire process [161]. The complexity and
dynamic characteristics of uncertainty play an important role
in creating trustworthy visualizations. Wu et al. [161] intro-
duced a comprehensive framework for quantitatively charac-
terizing and intuitively visualizing complex, dynamic uncer-
tainty information through visual analysis processes. The
framework uses error ellipsoids to model multidimensional
uncertainty and the dynamic variation of the uncertainty. A
flow-style visual metaphor is employed to visualize the evo-
lution of uncertainty in the analysis process, as illustrated in
Fig. 4.

6 Applications

Visualization design highly depends on the underlying data
and the specific application. Different types of data have dif-

ferent characteristics and patterns of interest that require spe-
cialized tool sets to visualize.

For graph-like data, analysts are usually interested in pat-
terns related to topological structures. For example, friend
relationships among a group of people can be represented
as a graph. When exploring the relations, analysts often use
visualization to keep them aware of the structure context [57].
To visualize textual data, the semantic meanings in the con-
tent attract the most attention. For example, various visual-
ization techniques [23,58,110] have been developed to help
analysts understand the theme or major topics in a large col-
lection of documents. When dealing with geographic data,
understanding the spatial distribution of information is usu-
ally the key to solving many problems. For example, to reveal
patterns in trajectory data, one common approach is directly
visualize them on the map [120]. Multivariate data, as a gen-
eral data type, exists in a variety of fields, but one com-
mon goal is to explore the inter-relationships between dif-
ferent dimensions. Targeting the inter-relationships, various
visualization techniques [151] have emerged to help ana-
lysts identify, locate, distinguish, categorize, cluster, rank,
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Fig. 5 Divided edge bundling
[120]: the view shows the
European follower graph for
GitHub. Colors indicate edge
directions (from blue to red)

compare, associate, or correlate the underlying multivariate
data.

Accordingly, in this section, we categorize recent visu-
alization work into four groups based on the characteristics
of their target data. For each category, we discuss several
recent examples and introduce the visualization techniques
employed by each example.

6.1 Graph visualization

A graph is a powerful abstraction of data that consist of ele-
ments and connections between elements. Social contacts
[57], trajectories on maps [120], and electronic communi-
cations [118] can all be modeled as graphs. According to
Landesberger et al. [145], graphs can be classified into two
categories: static and dynamic, based on their time depen-
dence.

6.1.1 Static graph visualization

In this section, we briefly introduce node-link-diagram-based
graph visualization techniques and other alternatives such as
matrix visualization.

Node-link diagrams For centuries, node-link diagrams
have been the most used visual representation for graphs.
Researchers are still fascinated by their intuitiveness and
power, and they have introduced various technologies tak-
ing advantage of this representation. However, recent visu-
alization work indicates that researchers have gradually
shifted their attention from finding new layout algorithms
[73,77,122,130] to studying the usability in various applica-
tions.

For example, Burch et al. [20] conducted a user study
to compare the readability of node-link diagram and space-
filling representations. They found that space-filling results
are more space-efficient but more difficult to interpret. In
particular, orthogonal tree layouts significantly outperform
radial tree layouts for some tasks, such as finding the least
common ancestor of a set of marked leaf nodes. Yuan et al.
[167] argued that a good layout cannot be achieved simply

by automatic algorithms but need user inputs. Thus they pro-
posed a framework that automatically stitches and maintains
the layouts of individual subgraphs submitted by multiple
users.

Another hot topic with regard to improving usability is
clutter reduction. Among all the solutions to reduce visual
clutter, edge bundling is still the most popular one [33,67,
120]. Recently, Selassie et al. [120] proposed a bundling tech-
nique for directed graphs. In their system, edges are bun-
dled into different groups to enhance directional patterns of
connectivity and symmetry (Fig. 5), which are unfortunately
obscured in previous methods. At the same time, skeleton-
based edge bundling was introduced by Ersoy et al. [40].
They calculated the skeleton of edge distributions and used
it to bundle the edges. Other ways to reduce clutter include
density estimation, node aggregation, and level-of-detail ren-
dering. Zinsmaier et al. [170] presented a novel approach that
combines these techniques and achieves a better time per-
formance than other state-of-art methods while generating
appealing layouts (Fig. 6).

Alternative representations The traditional matrix repre-
sentation is suitable for visualizing dense graphs due to its
non-overlapping visual encoding of edges. However, it may
be ineffective for sparse graphs. Recently, Dinkla et al. [36]
designed “compressed adjacency matrices”, which aim to
visualize sparse graphs, such as gene regulatory networks.
In their representation, each weakly connected component is
treated as a separate network and placed together to generate
a neat and compact visualization (Fig. 7). Similar to matrix
representations, PIWI [164] uses vertex plots that show ver-
tices as colored dots without overlap, to display the neighbor-
hood information of communities in a large graph. Together
with rich and informative interactions, PIWI enables users
to conduct community-related tasks efficiently. TreeNetViz,
a compound graph representation, was recently proposed by
Guo and Zhang [50] to visualize hierarchical information
in graphs. It combines a radial, space-filling visualization
(tree structure) with a circle layout (aggregated network)
to help analysts understand multiple levels of aggregated
information.
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Fig. 6 Level-of-detail rendering of a large graph [170]: the visualization shows a zooming interaction: from overview (left) to a local region (right)

Fig. 7 Compressed adjacency matrices [36]: the visualization shows the gene regulatory network of Bacillus subtilis (approximately 700 genes
and 1,000 regulations)

Fig. 8 Storyline visualization
of the movie The Matrix [133]

6.1.2 Dynamic graph visualization

Animation is a natural way to illustrate changes over time
since it can effectively preserve a mental map [10]. Sev-
eral attempts have already been made to visualize dynamic
graphs by leveraging animation techniques [10,165]. How-
ever, Archambault et al. [8] have shown that preserving a
mental map does not help much in gaining insights into ani-
mated dynamic graphs. As a result, recent methods focus
more on showing dynamic graphs statically [20,91,133]. To
encode the time dimension in a static way, a timeline and
small multiples are two popular choices.

Timeline-based approaches encode time as one axis and
then draw and align the graph at each time point on the

timeline. Thus, graphs that are preferably represented as 2D
node-link diagrams need to be visually compressed into a
1D space, which dramatically reduces the readability and
increases visual clutter. To address this issue, Burch et al.
[20] developed parallel edge splatting for scalable dynamic
graph visualization. In their system, temporal changes of the
graph are encoded into textures that are synthesized from
edge distributions.

To show entity clustering information over time, Tana-
hashi and Ma [133] used a generic algorithm to generate a
legible and esthetic storyline visualization (Fig. 8). However,
their approach is too slow to support real-time interactions.
To solve this problem, StoryFlow [91] was developed to cre-
ate better storyline layouts while also supporting real-time
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Fig. 9 DAViewer [169]: the interface shows detailed discourse trees, similarity statistics, rhetorical structures, and text content

interactions. To improve efficiency, it modeled the problem
as a hybrid optimization framework that combines discrete
and continuous optimizations.

Based on small multiples, Hadlak et al. [51] proposed in-
situ visualization, which allows users to interactively select
multiple focused regions and choose suitable layouts for the
selected data. They argued that a single visualization tech-
nique may not be enough due to the complexity of large
dynamic graphs. With their approach, a user can freely switch
between different visualizations to adapt the analysis focus
or the characteristics of regions of interest.

6.2 Text visualization

Text documents are now widely available in digital format
and have received more and more attention as an emerging
visualization topic. In this sub-section, we summarize and
categorize recent text visualization techniques based on their
target data (such as individual documents or document col-
lections) and their target tasks (such as showing static content
distributions or tracking temporal evolutions).

6.2.1 Visualization of static textual information

The visualization work on static text information can be clas-
sified into two categories: feature-based text visualization
and topic-based text visualization.

In feature-based text visualization, a feature indicates a
non-overlapping text chunk (e.g., keywords or phrases) or
a grammatical structure (e.g., infinitives or clauses), inside
a document. Word clouds, a fundamental visual metaphor,
visualize a single document or a set of documents by display-
ing the important keywords with font sizes that indicate their
frequency of occurrence. In the past few years, researchers
have introduced a variety of techniques to improve esthetic
appearance [32], interactivity [81], and expressiveness [32,
159]. With the aim of revealing various relationships among

terms, Word Tree [149] and Phrase Nets [142] take it a step
further. They build trees and graphs to visually convey occur-
rence relationships among terms.

Recently, many researchers have focused their attention
on visualizing narrative patterns, which are more complex
features that characterize text content. For example, Keim
and Oelke [76,107] used a pixel-based technique, which
they call “literature fingerprinting,” to understand and visu-
alize document signatures, such as vocabulary richness and
sentence length. They have proven that a simple visualiza-
tion can greatly help analysts characterize documents and
identify authorship. The latest work on visualizing narra-
tive patterns, including recurrence patterns [7] and discourse
trees [169], has also proven helpful to analysts and linguists
when analyzing the semantic and grammatical structures in
text documents or human discourse. For example, DAViewer
[169] integrates a dendrogram icicle into a tree-based visu-
alization to help discourse analysis. Their system visually
exposes grammatical structures inside a document, so that
linguists can easily explore, compare, and evaluate the dis-
course parsers (Fig. 9).

To provide an overview of a document collection, static
topic-based text visualization aims to detect and explore top-
ics (or clusters) hidden inside. Topic modeling or text cluster-
ing has a long history in the data mining field [87,126,127,
168]. Traditional methods include naive Bayes, maximum
entropy, and support vector machine. The basic idea behind
these methods is to convert each document into a vector inside
the hyperspace and then use the distance between the vectors
to represent the dissimilarity value between two documents.
In this way, clustering text documents can be transformed
into mathematically grouping vectors in the hyperspace.

To visually represent the clustering results to users, pro-
jections are a popular metaphor. A projection is considered,
in general, a technique that spatially arranges graphical ele-
ments on a 2D space to reflect the relationships among text
documents.
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Fig. 10 Whisper [22]: information diffusion on Twitter regarding a 6.8 magnitude earthquake in Japan. Twitter activities are arranged in a radial
layout, with the positions indicting their time stamps and geographic locations

Fig. 11 ThemeRiver [54]: keywords in a document collection are shown as colored “stripes” with width indicating the occurrence frequency of
keywords at different times

Based on different spatial encodings, different visualiza-
tion techniques have been developed. One common projec-
tion metaphor is a “galaxy system” [110], in which the dis-
tances between graphical elements indicate the dissimilari-
ties between documents. The major advantage is its appeal,
since it mimics cartographic maps, which are intuitive to most
people. For example, Heimerl et al. [58] used the Principal
Components Analysis (PCA) technique to visualize super-
vised classification results, enabling non-experts to interac-
tively train classifiers.

Some of the latest research into spatial encodings focuses
more on document attributes. For example, FacetAtlas [23]
classifies documents into clusters and draws density maps
based on the facets of the document. Thus, multi-faceted
relationships of documents within or across clusters can be

revealed. To emphasize the spatio-temporal diffusion process
in social media, Whisper [22] uses locations of graphical ele-
ments to reflect the geographic and time attributes of docu-
ments (Fig. 10).

6.2.2 Visualization of dynamic textual information

The time attribute poses special and exciting challenges to
text visualization, since it is critical for understanding con-
tent evolution patterns in time-varying document collections.
Recent research [27] has shown that temporal visualization
can help analysts with additional memory aids to filter irrel-
evant information, view complex event sequences, and build
correct storylines and solutions.
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Fig. 12 TextFlow [31]:
selected topic flows of VisWeek
publication data with thread
weaving patterns related to
primary keywords GraphG and
GocumentG

Fig. 13 EventRiver [96]: each
event is represented by a bubble,
whose shape encodes the
number of documents and
duration of that event

Fig. 14 Typographical maps
[1]: the visual representation of
several blocks in Chicago, IL.
Text alone forms the graphical
elements representing map
features

Several attempts [6,32,86] have been made to extend
existing visualization techniques to handle temporal docu-
ment collections. For example, SparkClouds [86] combines
well-accepted word clouds with sparklines to show the fre-
quency change over time.

Another category of topic-based text visualization is based
on the well-known “river” metaphor. ThemeRiver [54] was
originally designed to display temporal thematic changes of
selected words in a document collection (Fig. 11). In the
“river” metaphor, the X-axis denotes time, while individual
words are visually represented as colored “stripes” within the

river. The stripe width at a specific time point indicates the
occurrence frequency of the associated word.

Recent research has extended the basic “river” metaphor
to depict topic evolution [31,93] (Fig. 12) and event occur-
rences [96]. For example, TextFlow [31,46] was developed
to illustrate topic merging/splitting relationships and their
evolution in a text stream. EventRiver [96] models news cor-
pora as a consequence of relevant events occurrence. Thus,
it applies a temporal-locality clustering technique to group
news based on content and time-stamps, and maps them to
real-life events. In the proposed visualization (Fig. 13), each
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Fig. 15 BirdVis [43]: the interface shows occurrence maps for the Indigo Bunting

event is visualized as a bubble, the shape of which encodes
the document number and event duration. In addition, events
are connected and placed together to build a long-term story.

6.3 Map visualization

For thousands of years, paper maps and statistics were the
most prominent tools for studying geo-spatial data. In the
1990s, Geographic Information Systems (GIS) changed the
whole game by providing experts with the power of interac-
tive computerized tools, such as spreadsheets, databases, and
graphic tools. The ability to interact and see prompt changes
in maps not only provides a quantitative difference in the
number of results users can see, but also, more importantly, a
qualitative change in the way they think and make decisions
[157]. Maps have become a visualization interface for geo-
graphic data that supports information access and exploratory
activities.

Cartography has greatly influenced and benefited the
development of geographic visualization through its long
history of visual language design and its knowledge of geo-
graphic information. Accordingly, many geographic visual-
ization techniques are directly related to fundamental prob-
lems in cartography such as map projection [71], map label-
ing [1,44], and map generalization [53,148]. For example,
Afzel et al. [1] developed typographical maps that merge
text and spatial data (e.g., streets and parks) into a visual rep-
resentation. The major feature of this representation is that
text labels are directly used to form the graphical elements
(Fig. 14).

On the other hand, the development of interactive com-
puter tools, interface design, and related technologies has also
posed a new set of challenges and introduced new opportu-
nities to geographic visualization. Choropleth maps, a tradi-

tional tool in cartography, now take advantage of animation
and interaction to provide users with richer information in
support of sophisticated tasks, such as forecasting hot spots
[99] and validating spatio-temporal distribution models of
birds [43]. BirdVis [43] (Fig. 15) combines choropleth maps
with different visual components to allow analysts to explore
and correlate high-dimensional bird population data: space,
time, species, probability occurrences, and predicator impor-
tance. The flexible system demonstrates the capability to con-
firm existing hypotheses, as well as to formulate new ones.

In addition to extending existing cartography techniques,
new geographic visualization techniques are emerging. For
example, Scheepens et al. [117] presented an interactive
framework to composite density maps for multivariate trajec-
tories. Through six pre-defined operations, users can flexibly
create, compose, and enhance trajectories or density fields
to freely explore the trajectory data from different aspects
(Fig. 16). With the support of 3D rendering capabilities,
researchers have also built geographic visualization into the
3D space, instead of traditional 2D maps. Tominski et al.
[136] used two of the dimensions to represent the geographic
map and the third to stack trajectories and detailed attribute
data (Fig. 17).

6.4 Multivariate data visualization

Multivariate data, as a general type of data, are encountered in
numerous situations faced by researchers, engineers, finan-
cial managers, etc. Although they have a common goal to
understand the data distributions and investigate the inter-
relationships between different data attributes, specific tasks
vary from application to application. Targeted at different
tasks, various visualization techniques have emerged to help
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Fig. 16 Trajectory visualization [117]: the representation shows the accident risk map of passenger vessels (turquoise), cargo vessels (orange),
and tanker vessels (green). The diagram at the bottom shows how the map was created

Fig. 17 Stacking-based trajectory visualization [136]: the interface shows radiation values along the Tokio-Fukushima highway

analysts identify, locate, distinguish, categorize, cluster, rank,
compare, associate, or correlate the underlying data [151].

In 1996, Keim and Kriegel [74] provided an excellent cat-
egorization of visualization techniques for multivariate data:
geometric, icon-based, pixel-oriented, hierarchical, graph-
based, and hybrid. In this sub-section, we follow this tax-
onomy and review the latest developments of visual analytic
techniques for multivariate data.

In the past few years, the geometric category has cov-
ered most innovations in multivariate data visualization,
such as projections [72,88,112,140] and Parallel Coordinate
Plots (PCPs) [28,48]. Recent research into geometry-based
approaches focuses on exploring new projection techniques
[72,140] to reveal unexpected data distributions or integrat-
ing multiple geometric approaches to avoid limitations of
using them individually [28,88].

For example, Lee et al. [88] argued that the results of
common Multidimensional Scaling (MDS) projection can-
not characterize inter-cluster distances. Therefore, they inte-

grated a structure-based distance metric into the projection
pipeline to overcome the shortcomings.

Moreover, new aspects of multivariate data have been
exploited to improve analysis results. Turkay et al. [139]
divided the input data into two spaces: the items space and the
dimensions space. By interactively and iteratively operating
on both spaces, the authors argued that the joint analysis of
both spaces could greatly help users understand the relation-
ships between different data dimensions (Fig. 18).

Recently, Claessen and Van Wijk [28] visually connected
various geometry-based techniques, such as PCPs, scatter-
plot matrices, radar charts, and Hyperboxes, together with
“Flexible Linked Axes”. By allowing users to draw and drag
axes freely, the technique supports defining a wide range
of different visualizations (Fig. 19) to aid in various analy-
sis tasks. The authors argued that, through the highly cus-
tomizable and space-efficient interface, their versatile and
powerful technique can greatly benefit users in a variety of
ways.
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Fig. 18 The dual analysis pipeline proposed by Turkay et al. [139]

In addition to introducing new visual representations, clut-
ter reduction still remains a hot topic in PCP visualization. In
contrast to traditional transparency and bundling approaches,
Geng et al. [48] proposed angular histograms and attribute
curves. Their technique allows users to explore and reveal
correlation patterns by investigating the density and slopes
of the drawn histograms and curves (Fig. 20).

Compared with the development of the dominant geo-
metric category, the remaining categories have received rel-
atively less attention, yet there are several pieces of work
that need to be highlighted. For example, as an icon-based
approach, DICON [21], which is a treemap-style icon tech-
nique, was introduced to help compare and interpret clusters
of multivariate data. Compared with previous work, DICON
can additionally encode derived statistical information and
be easily embedded into various existing visualization tech-
niques.

The similarity tree technique was developed as a graph-
based approach by Paiva et al. [109] for visual analysis of
multivariate data. Compared with previous work, it adds hier-
archy to the concept of similarity by intuitively represent-
ing the levels of similarity as different depths in the tree. In
their paper, the authors applied the technique to three image
datasets and demonstrated its adaptability for visual data clas-
sification tasks.

7 Technical challenges

It is not easy to design and develop a perfect visualization.
There are five major technical challenges:

– Usability The development of InfoVis has been driven
by real-world applications and user requirements. Gener-
ally, a user is heavily involved with a visualization system
or toolkit to accomplish his/her analysis tasks. To help

visualization designers and developers design an effec-
tive visualization system/toolkit, researchers have devel-
oped a set of advanced empirical evaluation methods and
design study methods [12,49,52,60,78,84,119], as well
as several design theories [11,65,66]. These methods and
theories have achieved some success in designing effec-
tive and useful visualizations and moving research outputs
into practice. However, most of them were designed for a
specific application or a specific aspect of a visualization
technique. Visualization designers and developers have a
dire need to find effective usability evaluation methods
that are both specific to the visualization field and generic
enough for a wide range of visualization related applica-
tions or domains.

– Visual scalability Visual scalability is defined as the capa-
bility of visualization tools to effectively display large
data sets in terms of either the number or the dimension
of individual data elements [75]. Scalability is a funda-
mental challenge for InfoVis, especially with the boom
in big data analytics. In many applications, the amount
of data to be visualized is very large, often exceeding the
display capability of a screen by several orders of mag-
nitude. To solve this issue, researchers have developed
many data reduction techniques such as sampling, filter-
ing, clustering, PCA, and multidimensional scaling [75].
Although these techniques have achieved some success in
handling large amounts of data, none of them are perfect
and suitable for all applications. For example, with the
dramatic increase of data and a relatively constant dis-
play resolution, the data reduction rate in big data visu-
alization techniques continually needs to increase. As a
result, researchers continue looking for novel data reduc-
tion techniques that can balance a high-level overview and
low-level details. One interesting research topic is how to
involve users in the data reduction process, allowing users
to easily convey their information needs and contribute
their domain knowledge to this process. Furthermore, it
is worth studying the combinations of several data reduc-
tion techniques that complement each other in real-world
applications.

– Integrated analysis of heterogeneous data Heterogeneous
data are data from multiple sources and in varying for-
mats. Integration and analysis of heterogeneous data is
one of the greatest challenges for versatile applications.
With the rise of big data analytics, this task is more impor-
tant than ever in many functions of a business, such as
customer care, human resource management, and mar-
keting. For example, healthcare providers analyze large
collections of patient records in conjunction with data
on public health forums to deliver personalized patient
care and manage care resources. For areas such as man-
ufacturing, education, retail, healthcare, and the public
sector, heterogeneous text data from several sources are
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Fig. 19 FlinaPlots [28]: the representations show composited visualizations of PCPs, scatterplots, and histograms

Fig. 20 Angular histograms [48]: colors indicate the data density (red indicates the largest and light blue indicates the smallest)

increasingly at the center of economic activity and play
a crucial role in further growth, productivity, and innova-
tion. A number of use cases have emerged, each hoping
to answer a different set of questions by analyzing het-
erogonous textual data. How can a government improve
the happiness of its citizens by analyzing their posts on
various social media outlets, as well as survey data? How
can a company understand issues related to a high rate
of churn by examining customer feedback or call center
conversations in conjunction with customer transaction
data? How can a company hire their best employees by
evaluating thousands of resumes submitted on the com-
pany website and correlate them with internal employee
performance data? These are not simple problems and
today there are not sufficient interactive visual analytic
techniques and tools that can deal with heterogeneous
data.

– In-situ visualization In-situ visualization incrementally
generates visual representations when new data arrive.
It is an effective way to understand and analyze stream-
ing data. Streaming data is defined as data with a regular
rate of flow through hardware. Typical examples include
log data such as search logs and sensor logs, stock data,
and periodically updated social media data (e.g., tweets).
Due to the rapid rate of incoming data and the huge size of
data sets in the stream model, analysis of such streaming
data poses a great challenge in the field of InfoVis. For
example, over 340 million tweets are generated daily on
Twitter (according to 2013 statistics of [141]).
A variety of breaking news such as the series of protests
that erupted across the Middle East, the news of bin
Laden’s death, and the reactions to potentially disastrous
situations like earthquakes, first come from such noisy
streaming tweets [61,64]. Accordingly, a natural ques-
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tion is how to quickly detect breaking news events from
huge amounts of streaming tweets and better understand
information diffusion patterns in them.
To answer a question like this, it is necessary to study the
evolving patterns of streaming data by leveraging in-situ
visualizations. For example, for a breaking news event
in Twitter, government officers or sociologists aim to use
in-situ visualizations for better understanding how var-
ious topics compete for public attention when they are
spread through social media, what roles opinion leaders
play in the rise and fall of competitiveness of various top-
ics, and who are the key people spreading news of the
event [163].
However, it is not easy to design and develop in-situ visu-
alizations. The major challenges are to effectively share
the same processor and memory space, synchronize the
data processing and visualization tasks, and smooth com-
munication between the data processing module and the
visualization module.

– Errors and uncertainty Real-world data sets often con-
tain errors and/or uncertainties [98,161], for example,
noisy and inconsistent social media data published by
users every day, imprecise data from sensors, or imper-
fect object recognition in video streams. On the other
hand, uncertainty can arise at any stage of the visualiza-
tion process. For example, data sampling, data transfor-
mation, or data filtering may introduce errors and incon-
sistencies into the visualization, which is another major
source of uncertainty [161]. In order to strengthen the
truthfulness of visualization, it is important to properly
convey the potential errors and uncertainty to end-users.
Accordingly, it is necessary for visualization researchers
and developers to understand when and why one uncer-
tainty visualization method is more suitable for an appli-
cation than another [98].

8 Conclusions

In this paper, we have presented a survey on state-of-the-art
InfoVis techniques, with a focus on empirical methodolo-
gies, interactions, frameworks, and applications. A taxonomy
was built based on a detailed review of the literature under
the aforementioned four categories. With the taxonomy, we
noticed that most recent research has focused on empirical
methodologies and applications. This implies that more and
more InfoVis research outputs are deployed to real-world
applications with the boom of practical empirical method-
ologies.

As shown, many advanced InfoVis techniques have been
developed in the four major categories. These techniques
were applied to various applications ranging from network
visualization and text visualization, to map visualization and

multivariate data visualization. We also elaborated on the
major advantages and limitations of the methods under each
major category and shed light on future directions of research
by summarizing a set of technical challenges.
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